
Outline Introduction Code changes Optimization Performance Conclusion

Preparing for Mira: experience with FLASH
multiphysics simulations

Petascale Simulations of Turbulent Nuclear Combustion

Christopher Daley 1 2

1The Flash Center for Computational Science at the University of Chicago
2Argonne National Laboratory

March 7, 2013

1 / 30

Outline Introduction Code changes Optimization Performance Conclusion

1 Introduction

2 Code changes
Updating FLASH for BG/Q

3 Optimization
Initialization
Evolution

4 Performance
Best FLASH configuration
Scaling and hardware counter data

5 Conclusion

2 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Science objectives

To improve our understanding of the explosion mechanism of Type
Ia Supernova

Simulate two key physical processes with the FLASH code:
1 Buoyancy-driven turbulent nuclear combustion

Determines the amount of nuclear energy released during the
ordinary flame burning phase (the so-called ”deflagration
phase”)

2 Transition from the nuclear flamelet regime to distributed
nuclear combustion

Necessary condition for initiation of a detonation in the
Deflagration to Detonation Transition (DDT) model

In this talk I will refer to these simulations as “RTFlame” and
“DDT”, respectively

3 / 30

Outline Introduction Code changes Optimization Performance Conclusion

The FLASH code

FLASH is a multi-physics finite-volume Eulerian code and
framework with the following capabilities relevant to the early
science applications:

Directionally unsplit hydrodynamics
solver

Multipole gravity solver

Nuclear burning network

Equation of state (EOS) for
degenerate matter

Turbulent Flame Interaction (TFI)
model

Adaptive Mesh Refinement (AMR)
with Paramesh

Parallel I/O using HDF5 library

Lagrangian tracer particles

Capabilities in blue are being used for the first time in Flash Center Type Ia simulations

1.2 million lines of code (75% code, 25% comments)

Written in Fortran90 and C

Collection of code units which a user assembles into a custom
application

4 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Updating FLASH for BG/Q

We multithreaded FLASH using OpenMP directives in order
to run more efficiently on BG/Q

A natural choice because FLASH is mostly Fortran

This allows us to make use of multiple hardware threads on a
core and hide memory latency

Multiple MPI ranks on a core is not really an option because of
the memory overhead of FLASH early science applications

The placement of the OpenMP directives and how it fits with
the standard MPI decomposition provided by Paramesh is
described in the following slides

5 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Overview of AMR with Paramesh

Mesh is divided into blocks of
fixed size (typically 163 cells)

Blocks contain a layer of guard
cells containing a copy of
neighboring blocks solution
data

Explicit solvers in FLASH
perform stencil updates to
advance solution data

Blocks refine/derefine according
to a user-specified refinement
criteria and are organized in a
Oct-Tree (3D) hierarchy

6 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Standard MPI parallelism in Paramesh

The thick black lines show
blocks 12 through 17 being
assigned to a single MPI rank

6 total blocks

5 leaf blocks
1 parent block

FLASH solvers update the
solution on local leaf blocks

We keep this decomposition
and add OpenMP directives to
expose more data parallelism for
BG/Q

7 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Multithreading strategy 1

Assign different blocks to
different threads

Assuming 2 threads per MPI
rank

Thread 0 (blue)
updates 3 full blocks
- 72 cells
Thread 1 (yellow)
updates 2 full blocks
- 48 cells

This will be referred to as
“thread block list”

8 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Multithreading strategy 2

Assign different cells from the
same block to different threads

Assuming 2 threads per MPI
rank

Thread 0 (blue)
updates 5 partial blocks
- 60 cells
Thread 1 (yellow)
updates 5 partial blocks
- 60 cells

This will be referred to as
“thread within block”

9 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Optimization

A complete FLASH run consists of 3 phases: initialization,
evolution and finalization

The evolution phase controls the time-stepping of the
simulation and is normally the dominant cost

We needed to optimize initialization and evolution to run more
efficiently on BG/Q. We show our optimizations in 2 parts:

1 Optimizing the initialization phase of a DDT simulation

This reduced initialization time from hours to minutes

2 Optimizing the evolution phase of a RTFlame simulation

This reduced time to solution by 33% (it would be 39% if
including unused optimizations)
Note that these optimizations also benefit DDT simulations

10 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Slow initialization in the DDT simulation

The new DDT simulations were previously only run at scale
on Ranger at Texas Advanced Computing Center (TACC)

A test problem failed to initialize in 2 hours when using 8192
MPI ranks on Vesta BG/Q. Two reasons for the slowness

1 Fortran random number function is relatively slow on BG/Q

4µs on BG/Q with xlf-14.1
30ns on a x86 64 platform with gfortran-4.4.4
Removing many unnecessary calls to random number resolved
this issue - simple

2 Custom read of the turbulence field data from a HDF5 file is
slow

Puzzling because data is read using collective parallel I/O and
the file is only 385 MB...

11 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Slow initialization in the DDT simulation

Core files showed many MPI ranks in the call stack of
MPI file read at when job was terminated

This is an independent MPI-IO function!

The HDF5 function H5Pget mpio no collective cause
(HDF5 >= 1.8.10) revealed that a datatype conversion
prevented collective I/O data transfer

The turbulence field dataset has type H5T IEEE F64LE

“LE” indicates little-endian

Blue Gene is a big-endian platform

Changing the dataset type to H5T IEEE F64BE enabled
collective I/O and improved read performance by 2 orders of
magnitude (see Figure 1 in next slide)

12 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Collective I/O and HDF5 dataset endianness

Figure 1: Time to read the turbulence field file on Vesta BG/Q (used 16 MPI ranks
per node in MPI-only configuration)

13 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Optimizing the evolution in the RTFlame simulation

Many optimization opportunities found using IBM’s High
Performance Computing Toolkit (HPCT)

Linking against the libmpihpm smp.a library provides

Statement level profiling through vprof

Hardware counter summary information
MPI performance data

Analyzing the vprof data led us to

Explicitly link against the Mathematical Acceleration
Subsystem Software (MASS) library to get a faster log function
Reorder arrays in unsplit hydro to avoid expensive temporary
array copies (see next slide)

We show the impact of these changes (and other changes)
later in Figure 2

14 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Unsplit hydro array layout optimization

689 479 c a l l h y u h d d a t a R e c o n s t O n e s t e p &
. . .
711 l e i g (1 : NDIM, i , j , k , 1 :HY WAVENUM, 1 : HY VARINUM) ,&
712 r e i g (1 : NDIM, i , j , k , 1 : HY VARINUM , 1 :HY WAVENUM))

479 counts (approximately 4.79 seconds)

Reorder arrays so that i,j,k are the slowest varying dimensions

allows us to pass a memory address instead of creating a
temporary array

689 37 c a l l h y u h d d a t a R e c o n s t O n e s t e p &
. . .
711 l e i g (1 , 1 , 1 , i , j , k) ,&
712 r e i g (1 , 1 , 1 , i , j , k))

37 counts (approximately 0.37 seconds)

15 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Unsplit hydro array layout optimization

689 479 c a l l h y u h d d a t a R e c o n s t O n e s t e p &
. . .
711 l e i g (1 : NDIM, i , j , k , 1 :HY WAVENUM, 1 : HY VARINUM) ,&
712 r e i g (1 : NDIM, i , j , k , 1 : HY VARINUM , 1 :HY WAVENUM))

479 counts (approximately 4.79 seconds)

Reorder arrays so that i,j,k are the slowest varying dimensions

allows us to pass a memory address instead of creating a
temporary array

689 37 c a l l h y u h d d a t a R e c o n s t O n e s t e p &
. . .
711 l e i g (1 , 1 , 1 , i , j , k) ,&
712 r e i g (1 , 1 , 1 , i , j , k))

37 counts (approximately 0.37 seconds)

16 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Unsplit hydro array layout optimization

689 479 c a l l h y u h d d a t a R e c o n s t O n e s t e p &
. . .
711 l e i g (1 : NDIM, i , j , k , 1 :HY WAVENUM, 1 : HY VARINUM) ,&
712 r e i g (1 : NDIM, i , j , k , 1 : HY VARINUM , 1 :HY WAVENUM))

479 counts (approximately 4.79 seconds)

Reorder arrays so that i,j,k are the slowest varying dimensions

allows us to pass a memory address instead of creating a
temporary array

689 37 c a l l h y u h d d a t a R e c o n s t O n e s t e p &
. . .
711 l e i g (1 , 1 , 1 , i , j , k) ,&
712 r e i g (1 , 1 , 1 , i , j , k))

37 counts (approximately 0.37 seconds)

17 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Optimizations that reduce FLASH evolution time

Figure 2: Impact of each successive optimization on RTFlame evolution time (used
16 MPI ranks per node and 4 threads per MPI rank on Vesta BG/Q). Blue bars
indicate optimizations currently being used in FLASH early science applications.

18 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Performance overview

The performance section is divided into 2 parts:

1 Most efficient way to run a fixed-size FLASH test problem
A BG/Q node is very flexible. Must choose

MPI ranks per node
OpenMP threads per MPI rank

FLASH has 2 different styles of multithreading

The coarse grained “thread block list”
The finer grained “thread within block”

2 Performance of the best configuration of a fully-optimized
FLASH binary

Strong and weak scaling
Hardware counter summary data

19 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Performance matrix

Figure 3: Time to solution in a fixed RTFlame test problem on 128 nodes of Vesta
BG/Q when varying the number of MPI ranks and OpenMP threads per node.

20 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Performance matrix

Figure 4: Time to solution in a fixed RTFlame test problem on 128 nodes of Vesta
BG/Q when varying the number of MPI ranks and OpenMP threads per node. The
fastest time to solution is circled.

21 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Performance matrix

Figure 5: Time to solution in a fixed RTFlame test problem on 128 nodes of Vesta
BG/Q when varying the number of MPI ranks and OpenMP threads per node. The
best compromise between time to solution and memory usage is circled.

22 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Speedup

Figure 6: Speedup in a fixed RTFlame test problem on 32, 64, 128 and 256 nodes of
Vesta BG/Q (used 16 MPI ranks per node, 4 OpenMP threads per MPI rank and both
FLASH multithreading strategies).

23 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Best FLASH configuration on BG/Q summary

Best performance: 32 MPI ranks/node, 2 threads/MPI rank
Tricky to fit application in 512MB/MPI rank

The unsplit hydro solver is more memory hungry than the split
hydro solver used for science runs on BG/P in previous years

Best compromise: 16 MPI ranks/node, 4 threads/MPI rank
Comfortable to fit application in 1GB/MPI rank. Buffers can
be sized larger to accommodate

Rapid refinement of problem
Congregation of many tracer particles on some MPI ranks

Finer-grained threading in FLASH performs better

BG/Q to BG/P node-to-node ratio of 8.9x (RTFlame) and
7.9x (DDT)

24 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Strong scaling

Figure 7: Strong scaling of various resolution RTFlame test problems on Mira BG/Q
(used 16 MPI ranks per node, 4 OpenMP threads per MPI rank and fine-grained
threading).

25 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Weak scaling

Figure 8: Weak scaling of various resolution RTFlame test problems on Mira BG/Q
(used 16 MPI ranks per node, 4 OpenMP threads per MPI rank and fine-grained
threading).

26 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Scaling summary

The scaling tests used up to 32,768 (215) nodes

>2 million-way parallelism at 32,768 nodes
(524,288 MPI ranks and 4 OpenMP threads per MPI rank)

The circled data points in Figures 7 and 8 are from runs with
PAMI ALLREDUCE REUSE STORAGE=N and
PAMI ALLTOALL PREMALLOC=N

These environmental variables reduced memory usage and
allowed 20483 resolution runs to succeed

Good weak scaling: maximum scaling loss of 13.5% when
going from 64 to 32,768 nodes

Production early science runs are using approximately 18 leaf
blocks per MPI rank

27 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Hardware counter data
==

Hardware counter report for BGQ - sum for node <0,0,0,0,0>.

cores in use = 16, active threads per core = 4.

==

--

FLASH_evolution, call count = 1, avg cycles = 364210026210, max cycles = 364213555879 :

-- Counter values summed over processes on this node ----

0 71127700508 Committed Load Misses

0 996543943304 Committed Cacheable Loads

0 57759693733 L1p miss

0 2370956187483 All XU Instruction Completions

0 827216441627 All AXU Instruction Completions

0 1261426933713 FP Operations Group 1

-- L2 counters (shared for the node) -----------------

100 569692088884 L2 Hits

100 7121203216 L2 Misses

100 8169110557 L2 lines loaded from main memory

100 6253069690 L2 lines stored to main memory

Derived metrics for code block "FLASH_evolution" averaged over process(es) on node <0,0,0,0,0>:

Instruction mix: FPU = 25.87 %, FXU = 74.13 %

Instructions per cycle completed per core = 0.5488

Per cent of max issue rate per core = 40.69 %

Total weighted GFlops for this node = 5.541

Loads that hit in L1 d-cache = 92.86 %

L1P buffer = 1.34 %

L2 cache = 5.08 %

DDR = 0.71 %

DDR traffic for the node: ld = 2.871, st = 2.198, total = 5.069 (Bytes/cycle)

28 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Conclusion

Hybrid MPI+OpenMP FLASH applications are faster than
MPI-only FLASH applications on BG/Q

Good scaling to large processor counts

Good node-to-node performance advantage over BG/P

8.9x for RTFlame
7.9x for DDT

The BG/Q platform allows us to run 20483 effective
resolution simulations

Previously not possible on BG/P

29 / 30

Outline Introduction Code changes Optimization Performance Conclusion

Any questions?

30 / 30

Backup slides

Creating a custom Makefile

-2e+22

-1.5e+22

-1e+22

-5e+21

 0

 5e+21

 1e+22

 0 0.0001 0.0002 0.0003 0.0004 0.0005

y-
m

om
en

tu
m

time (seconds)

Intrepid 7 Aug 2012
Vesta 7 Aug 2012 - qnohot - No OpenMP

Vesta 6 Aug 2012 - qnohot - 1 OpenMP thread
Vesta 6 Aug 2012 - qnohot - 4 OpenMP threads

Vesta 7 Aug 2012 - qnohot - selective compile - 4 OpenMP threads

Figure 9: Issues with OpenMP compiler option
(-qsmp=omp:noauto).

“-O3 -qnohot” gave
good answers

“-qsmp=omp:noauto
-O3 -qnohot” gave
bad answers (even
with 1 OpenMP
thread)???

Selective use of the
option on files
containing OpenMP
gave good answers

31 / 30

Backup slides

Finding a safe optimization level

-1e+22

 0

 1e+22

 2e+22

 3e+22

 4e+22

 5e+22

 6e+22

 7e+22

 8e+22

 0 0.002 0.004 0.006 0.008 0.01 0.012

y-
m

om
en

tu
m

time (seconds)

Intrepid 4 Aug 2012
Vesta 14 Aug 2012 - qnohot - selective compile

Vesta 14 Aug 2012 - qhot - selective compile

Figure 10: Issues with aggressive compiler option
(-qhot).

Selective “-O3
-qnohot” gave good
answers

Selective “-O3 -qhot”
gave bad answers

Consistent good
answers with selective
“-O3 -qnohot” in
various test problems.

32 / 30

Backup slides

Working around memory usage issue

Some runs (particularly >= 4096 nodes) crashed during
initialization because of out-of-memory errors

Found huge memory consumption on Mira BG/Q... but
surprisingly not on Intrepid BG/P

Memory wrappers show growth happens in the call-stack of
the Paramesh subroutine named find surrblks

called once at initialization and once at restart
heavy (synchronous) communication

mtrace shows unfreed memory in mpich2 and PAMI memory
allocation wrappers - unhelpful

Created an optimized version of find surrblks with less
communication. The effect on memory usage is shown in
Figure 11

33 / 30

Backup slides

Memory usage issue on BG/Q

Figure 11: Memory growth after running find surrblks subroutine on Intrepid
BG/P (4 MPI ranks per node) and Mira BG/Q (16 MPI ranks per node).

34 / 30

	Outline
	Introduction
	Code changes
	Updating FLASH for BG/Q

	Optimization
	Initialization
	Evolution

	Performance
	Best FLASH configuration
	Scaling and hardware counter data

	Conclusion
	
	Appendix
	Backup slides

